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Abstract

We consider the trade-off between imperfect control and communication in orga-
nizations. A principal anticipates receiving private information and hires an agent to
take an action for her. She has the ability to contractually tie the agent’s action to
the state, but this control is incomplete. States not covered by a contract induce a
communication game. Close alignment of interests favors communicating and, thus,
ceding authority to the agent, and wvice versa. Contracting increases the number of
actions that can be induced through communication. Optimal contracts that do not
cover all states both substitute for and facilitate communication.
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1 Introduction

We investigate information processing in organizations. A principal benefits from tying an
agent’s behavior to anticipated information. Ideally, the principal would want to prescribe
actions that are optimal, contingent on every state. It may be difficult, however, to institute
the rules and procedures necessary to exercise this degree of control. Therefore, the principal
may prefer to cede authority to the agent and to rely on non-binding communication with
the agent.

Environments in which a principal wishes to guide behavior in response to anticipated
private information are common. They include private sector procurement, in which the
procuring firm expects better information about final product specification; defense pro-
curement, in which the government expects access to superior intelligence; contractors, who
learn about projects before their employees do; and management, which plans to use market
analysis to direct product development.

We consider a simple dyadic organization with imperfect control and the option of strate-
gic information transmission (Crawford and Sobel (1982), henceforth CS). A principal (the
sender, she) hires an agent (the receiver, he) to take an action for her. At the contracting
stage, the sender faces a competitive market for receivers and can, therefore, determine the
conditions of the hire. Prior to receiving private information about the state of the world,
the sender writes a contract that prescribes actions as a function of the state. Contracts are
lists of clauses, with each clause identifying a set of states and the action to be taken for
that set.!

We assume that contracts are incomplete: there is a finite upper bound on the number
of clauses. In addition to this assumed contractual incompleteness, the sender can choose
contracts to be obligationally incomplete:®> contracts need not cover all contingencies. An
obligationally incomplete contract induces a communication game, in which the sender has
the option to provide information about states not covered by the contract, and the receiver is
free to optimally respond to that information. There is no commitment in the communication
game and messages are costless. Hence, communication is cheap talk.

When writing a contract, the sender weighs the benefits of controlling the agent’s actions
against the responsiveness of those actions to information. Each contractual clause allows
the sender to enforce her preferred action, conditional on a set of states. This control over the
agent’s actions, however, is imperfect because of the assumed contractual incompleteness.
Ceding authority to the agent for some states and then relying on non-binding communication
gives the principal an additional degree of freedom. At the expense of having the agent
choose his preferred action rather than the principal’s, ceding authority to the agent can
help making the organization more responsive to information overall. The analysis of this
trade-off between control and information responsiveness is the focus of the present paper.

'We have in mind an environment in which, at the contracting stage, both principal and agent are
uninformed about the state of the world; after contracting and prior to contract execution, the principal
learns the state; and after contract execution, information about the state becomes public.

2Ayres and Gertner (1992)



Under general distributional and payoff assumptions, the sender always uses the maximal
number of clauses. Optimal obligational incompleteness depends on this bound and on the
degree of incentive alignment (the sender’s bias relative to the receiver). For any fixed bias, if
the bound on the number of clauses increases without limit, optimal contracts approximate
obligationally complete contracts. Conversely, fixing the maximal number of clauses, with
near-perfect incentive alignment, nearly all states will induce communication. In that case,
the optimal contract will be highly obligationally incomplete.

Using the leading example of CS, with a uniform type distribution, quadratic loss func-
tions, and a constant bias, we can be more explicit. For any maximal number of contract
clauses, there is a value of the bias such that for any higher bias, any optimal contract will
be obligationally complete — there will be no communication. For any fixed bias, there is
a contract that allows for more actions to be induced by communication than in the stan-
dard cheap talk game without contracting. Our main characterization result establishes
that whenever there is communication, contract clauses will be used to separate events that
induce distinct communication actions and, therefore, to relax incentive constraints in the
communication game. This highlights the dual role of contracting as both substituting for
and facilitating communication.

Simon (1951) is the first to draw attention to the importance of contractual incomplete-
ness. He notes that many contracts take the form of an “employment contract.” An employ-
ment contract, in exchange for a fixed wage, transfers authority to the principal rather than
providing a detailed specification of the agent’s action. Simon conjectures that such con-
tracts are chosen when the agent does not care too much about the principal’s decision, and
the principal is uncertain about which decision will be optimal. As Simon points out, when
considering the problem of planning under uncertainty, “the central question is to determine
the optimum degree of postponement of commitment” (p. 304). We are interested in the
trade-off of commitment through the contract and postponement of commitment resulting
in communication. The principal has to commit under uncertainty since she learns the state
only after the contract is written.

Writing costs are sometimes used to rationalize contractual incompleteness. Dye (1985)
is the first to make writing and monitoring cost explicit.®> He notes that contracts with
specifications so detailed that they are sensitive to every state are prohibitively expensive to
write. The contracts he considers consist of finite lists of clauses, with conditions partitioning
the state space. The cost of writing a contract is increasing in the number of clauses.

Battigalli and Maggi (2002) explore the foundations of writing costs by making the lan-
guage in which contracts are written explicit. A contract specifies a list of clauses and a
transfer. Clauses map contingencies into instructions. To describe more complex contingen-
cies and instructions, more elaborate clauses are needed. The cost of a contract is increasing
in the number “primitive sentences” that it uses. These writing costs result in two types of
contractual incompleteness: rigidity — insufficient dependence on the state of the world; and
discretion — insufficient precision in the prescription of behavior. In essence, each contrac-
tual clause maps a set of states into a set of behaviors, and with writing costs, there will be

3Schwartz and Watson (2004) endogenize the costs of writing contracts.



clauses for which these sets are non-degenerate.

Our environment, in which the number of clauses is exogenously fixed, also gives rise to
rigidity and discretion: whenever the optimal contract does not cover all states, the state
space splits into a contracting region (states covered by the contract) and a communication
region (states not covered by the contract). We have rigidity in the contracting region
and discretion in the communication region. We place more emphasis than do Battigalli
and Maggi (2002) on asymmetric information and partially aligned interests. Asymmetric
information and partial alignment of interests create a role for information transmission —
i.e., greater alignment of interests favors discretion, and vice versa.

Shavell (2006) studies the impact of courts’ contract interpretation on the writing of con-
tracts. Again, contracts are lists of clauses, each comprised of a condition (a set of states of
the world) and an instruction. Conditions are mutually exclusive but not necessarily exhaus-
tive.r A method of interpretation maps the written contract into an interpreted contract,
with the latter governing the contractual relationship. The cost of writing a contract is an
increasing function of the number of clauses in the contract. Due to these costs, written
contracts may contain gaps — sets of states not covered by any condition. Contracts may be
incomplete in two senses: they may not be fully detailed complete, which would require a
specific clause for each contingency, and they may not be obligationally complete (see Ayres
and Gertner (1992)), having the above-mentioned gaps. One role of interpretation is to fill
gaps, another to replace stated with interpreted clauses. Interpretation rules may simplify
written contracts and help contracting parties economize on writing costs. The prospect of
interpretation, like the prospect of communication in our setting, shapes how contracts are
written.

Since Simon (1951), the interplay of information and authority has played an important
role in the study of organizations. Aghion and Tirole (1997) distinguish the right to make
a decision (formal authority) from the power to influence a decision (real authority). Either
the principal or the agent has formal authority. Real authority requires information that
players can acquire at a cost. In their setup, communication is not modeled explicitly.

Dessein (2002) examines the conditions under which an uninformed principal cedes au-
thority to a better-informed agent. He adopts an incomplete contracting approach in which
authority, but not actions, can be contracted upon. The principal has a choice between del-
egating decision rights to the agent and making decisions herself after communicating with
the agent. Delegation leads to a loss of control, while communication entails a loss of in-
formation. Dessein (2002) shows that this trade-off favors delegation, unless the preferences
of the principal and the agent are strongly misaligned. In our setting, the principal has the
informational advantage but may cede authority to the agent if sufficiently closely aligned
incentives make communication attractive.

Deimen and Szalay (2019) analyze a similar comparison of delegation and communication
but with endogenous information. In their setup, the agent can choose how much and
what kind of information to acquire. The principal can choose whether to delegate decision

4Heller and Spiegler (2008) allow for contradictory clauses, in which conditions overlap, but the corre-
sponding instructions differ.



rights or to rely on communication. They find that the principal prefers communication
over delegation in environments in which communication with conflicts of interests conveys
relatively little information. In contrast to their study, in our case, the trade-off is between
loss of control and loss of responsiveness to information. Our setup has communication when
the decision rights are left with the agent, and communication may be advantageous when
detailed regulation of the information flow is difficult. Moreover, the principal never fully
delegates or communicates, but always retains a sliver of control.

The literature on optimal delegation considers a problem of allocating authority that
is similar to ours.® A principal optimally divides the state space into different regions of
authority, where she either retains authority or delegates to the agent. The crucial difference
between the setups is the allocation of information. In the literature on optimal delegation,
the uninformed principal decides how to optimally constrain the decision rights of the in-
formed agent. In our case, the principal anticipates receiving information about the state
and commits ex ante to contract with the uninformed agent.

Our paper is also related to the communication literature that allows the type distribution
to evolve. Golosov, Skreta, Tsyvinski and Wilson (2014) and Krishna and Morgan (2004)
examine different versions of models with repeated cheap talk. In both cases, in equilibrium,
the distribution that represents the receiver’s belief about the sender’s type changes over time
as a consequence of belief updating, in a sense giving rise to new communication games. In
our setup, the principal determines the support of the type distribution in the communication
game when choosing the conditions in the contract.

We abstain from modeling transfers explicitly in the main analysis, consistent with Bat-
tigalli and Maggi (2002), Shavell (2006), Dessein (2002), and others. In our environment,
transfers play no role in providing incentives to supply information or to induce actions. We
briefly discuss an example in the Appendix that suggests that our results can be expected
to generalize if we allow for ex ante transfers.

The paper is structured as follows. After presenting the model in Section 2, we introduce
the communication subgame in Section 3. Section 4 illustrates a simple example of optimal
contracts. In Section 5, we analyze the general setup. The uniform-quadratic setup is the
focus of Section 5.2. A final section concludes.

5See, for example, Holmstrom (1984), Holmstréom (1977), Melumad and Shibano (1991), Szalay (2005),
Alonso, Dessein and Matouschek (2008), Kova¢ and Mylovanov (2009), and Amador and Bagwell (2013).

SFormally, our model corresponds to the limit of cases in which the agent cares primarily about the
wage and only secondarily about the decision that is made. The more the agent cares about his wage, the
less reason there is for the principal to compromise on the decision. In the extreme, when the agent has a
lexicographic preference that favors his wage, any action the principal prescribes in the contract will be her
own favored action, conditional on the available information, as is the case in the model we analyze in the

paper.



2 Model

We consider a game with two players, a sender, S, and a receiver, R. They interact in two
phases. In the first phase, the sender writes a contract for how information is dealt with in the
second phase.” The clauses in the contract are coarse, and the sender may choose a contract
that does not cover all states of the world. For states covered by the written contract, the
instruction specified by the respective clause is implemented. For the remaining states, a
communication game is played.

The payoff and information structure closely follows CS. The players’ payoffs, U*(y, 0, b)
for the sender and U%(y, ) for the receiver, depend on the receiver’s action y € R, the state
of the world 6 € [0,1], and a parameter b > 0 that measures the divergence of preferences
between the sender and the receiver.® The state is drawn from a common prior distribution F
with continuous density f that is positive everywhere; f(6) > 0 for all § € [0, 1]. The payoff
functions U?, for i = R, S, are assumed to be twice continuously differentiable. Denoting
derivatives by subscripts, we assume that the payoff functions are strictly concave: Uj, <
0; the sorting condition U{, > 0 holds; and, for all 6, there is an action y‘(f) such that
Ui(y(0),0) = 0. We assume that y°(0) # y*(0) for all § € [0, 1].

At the beginning of the contract-writing game G, the sender writes a contract C =
{(Cy, )} ,. The contract specifies K clauses (Cy,xx), k = 1,..., K. There is an exoge-
nous maximal number of clauses &.% Each clause (Ck, ) consists of a condition Cy, C [0, 1]
and an instruction x; € R. The interpretation is that if condition C} holds —i.e., 6 € (Y}, is
realized — then the receiver is instructed to take the action y = x. Contracts must satisfy:
CpNCir = P for all &’ # k" (to avoid contradictions); Cj, is an interval for each k =1,..., K
(motivated by keeping contracts simple); and UkK:1 Cy is a closed set. Denote the lower
(upper) endpoint of the interval Cy by C, (Ci). For any § € R, we refer to the clause
(Ck + 6,z + 0) as the d-translation of the clause (Cy,xy) and to the condition Cy + § as the
d-translation of the condition Cy,.'° We allow for an empty contract without clauses, in which
case we adopt the convention that K = 0. An obligationally complete contract covers the
entire state space, UkK:1 Cr = [0, 1]. Denote the set of all contracts by €. Sometimes, it will
be convenient to highlight the maximal number of clauses and the sender’s bias, in which
case we make the dependence of the game on these parameters explicit and write G(K,b)
for the contract writing game.

After the contract C is written and then observed by the receiver, the state 6 is realized
and privately observed by the sender. For any state covered by the contract —e.g., 0 € Cy/
— the instruction stipulated for that state, xj/, is implemented. For any state not covered by
the contract C, the sender sends a message m € M = [0, 1] to the receiver. After observing

"Note that the contract specifies only actions and that we assume that there are no transfers.

8For notational convenience, we will sometimes suppress the dependence of the sender’s payoff on the
bias b.

9This corresponds to a limiting case of writing costs that are increasing in the number of clauses (see,
e.g., Dye (1985)). Writing costs are zero for the first K clauses and prohibitive thereafter.

0Here, for any set C' C R and any § € R, C + ¢ denotes the Minkowski sum of the sets C and {0} — i.e.,
C+:={d eR|FceCst. ¢ =c+}.



the sender’s message, the receiver takes an action y € R.

Every contract C induces a communication subgame, I'C, in the event that the state 6
belongs to the gap £(C) := [0,1]\Ui_, Ci in the contract —i.e., § € £(C). In this communica-
tion subgame, the commonly known type distribution F€ is the prior F' concentrated on the
set L(C). If the contract C is empty, we denote the resulting communication subgame by I'°.
The communication subgame I'Y is simply a CS game. If we want to make the dependence
of the communication subgame on the bias parameter explicit, we write I'°(b). A (behavior)
strategy o : £(C) — A(M) of the sender in the communication subgame I'° maps states to
distributions over messages. A strategy p : M — R for the receiver in I'C maps messages to
actions. Given the strict concavity of the receiver’s utility, the restriction to pure receiver

strategies is without loss of generality. A sender strategy (C; (O'C/) e €> in the contract-

writing game G specifies a contract C and for every possible communication subgame I'C a

strategy o€. A receiver strategy ((pcl) e ¢> in the game G specifies a strategy p¢ for every

possible communication subgame I'¢". We are interested in sender-optimal subgame-perfect
equilibria of the contract-writing game G(K,b), denoted by e(K,b) = €. We refer to the
contracts chosen in these equilibria as optimal contracts.

3 Communication

For a strategy profile (o€, p¢) in communication subgame I'C, we say that a communication
action y is induced by that profile if there is a type # and a message m in the support of
0¢(#) such that p(m) = y. If, in addition, (0, o) is an equilibrium profile, we say that
action y is induced in equilibrium. As in CS, if the actions that are induced in equilibrium
are 0 < 3 < Yo < ... < Yn_1 < Yn < 1, there are n + 1 critical types 0 = 6y < 01 <
0y < ... < 6,1 <0, =1 such that type 0; is indifferent between actions y; and y;;, for
j=1,...,n— 1. We follow the convention of referring to the indifference requirement for
critical type 8;, 7 = 1,...,n — 1, as that type’s arbitrage condition. Since a critical type
may belong to a condition C%, unlike in CS, critical types do not necessarily bound the sets
of types who induce a common action. In an equilibrium that induces n actions, we refer
to the interval (0;_1,6;) as step j, for j = 1,...,n. We call an equilibrium that induces n
actions an n-step equilibrium.

Given an equilibrium e of the communication subgame I'®, we refer to an interval (Q, 5)
of types as a communication interval if there is an action y that is induced with positive
probability in e, § = inf{f € [0,1]|¢ induces y}, and § = sup{6 € [0,1]|0 induces y}. Ob-
serve that for each action y; that is induced in equilibrium, the corresponding communication
interval is a (possibly strict) subset of the step (6,_1,6;).

The standard communication game introduced by CS is included in our setup as subgame
'Y, in which no contract is written. If there are a positive number of clauses in the contract,
some results from their paper carry over to our setting. It is straightforward to see that CS’s
Lemma 1 holds for all communication subgames.



Lemma 1 (CS Lemma 1) There exists an € > 0, uniform over all communication subgames
I'C, such that for every equilibrium in I'C and all actions y and y' induced in that equilibrium,
ly —y'| > e. There is an upper bound on the number of actions that are induced in equilibrium
that is uniform across all communication subgames

Proof. See CS Lemma 1. That ¢ is uniform over all communication subgames follows from
the fact that the type distribution plays no role in the proof. O

The maximal number of actions N(C) that can be induced in communication subgame I'°
can vary with the distribution F€ that is induced by contract C. At the same time, since € is
uniform across communication subgames, there is an upper bound N € N on the number of
equilibrium actions that is uniform across all communication subgames —i.e., N(C) < N € N
for all C € €.

Another fact familiar from CS remains true in our setting: For every communication
subgame I'C, all equilibria are interval partitional. That is, for every equilibrium action, the
set of types who induce that action is of the form I N L(C), where I C [0, 1] is an interval.

4 Example

Suppose that payoff functions are quadratic, U(y, 0,b) = —(0+b—y)?, UR(y,0) = —(0—y)?,
and the type distribution is uniform on [0, 1]. Consider K=1andb= %, a bias that is too
large for more than one action to be induced without a contract. In contrast, we will see
that the optimal contract with a single condition gives rise to a communication game with
an equilibrium that induces two communication actions.

Call a contract an n-step contract if n is the maximal number of communication actions
possible in equilibrium with that contract. Let C be an optimal contract among n-step
contracts and EU® (C*) the corresponding sender-optimal equilibrium payoff. When no
contract is written, denote the sender’s payoff from a sender-optimal equilibrium by EU® (0).
By Proposition 4 below, for biases b € (}1, %) in the game G(1,b), there are four candidates
for optimality: no contract and O-step, 1-step, or 2-step contracts; no contract exists that
induces an equilibrium with more than two receiver actions. An optimal contract in this
example maximizes the sender’s expected payoff among the optima of these four options.

The first option — where no contract is written — results in the standard cheap talk
game, I', being played. For b = %, in this game, there is no information conveyed in any
equilibrium. The receiver’s action after every equilibrium message is y* = %, and the sender’s
expected payoff is EU®(0) = —15 —b* = —0.194 (for an illustration, see Figure 1, first panel).

The second option is for the sender to write an optimal obligationally complete contract
with one condition Cj = {([0,1],2 + 1)} that covers the entire type set [0,1] and imposes
her optimal action (for an illustration, see Figure 1, second panel). This contract increases
her expected payoff to EU® (C) = —1—12 = —0.083. It leaves no room for communication,
raising the question of whether the sender can gain from reducing the size of the condition

and allowing for some communication.



The third option has the sender write a contract that allows for a 1-step equilibrium. By
Observation 1 below, it is not optimal for the sender to place the single condition C' = [Q , a
in the interior of the state space. Therefore, the sender can place the condition at either
extreme of [0,1]. It is without loss of generality to consider the case with C' = 0. Given
the condition [0, C], the optimal instruction is given by z = % + % The sender’s problem of
determining the optimal C' is

¢ L (T 1\, [ 1 (C+1) 2d
mcax/o —<s+3—<2+3)> 3—1—/0— s+§— 5 s,

where the first integral is the expected sender payoff for states covered by the contract, while
the second integral is the expected sender payoff from communication. The solution to this
maximization problem is reached at C' = 2 (1 + 4). Hence, a 1-step optimal contract is
given by C; = {([O,% (1 + %)] ,i (1 + g) + %)} For an illustration, see the third panel of
Figure 1. For this contract, the sender’s expected payoff is higher than for the previous ones:
EU® (C;) = —0.064.

The sender’s fourth option is to write a contract that makes a 2-step equilibrium possible.
By Proposition 6 below, we can limit our attention to contracts and equilibria in which the
single condition C' contains the sender’s critical type, 61, that is indifferent between the two
communication actions. That is, it suffices to consider §; € [C,C]. Therefore, we can find
an optimal contract by solving

¢ 2 ¢ c ? ! c+1)\’
max —/ 8+1—g ds—/ s—{—l— C’—i_Q—|—1 ds—/ 54_1_& ds
c.c 0 3 2 c 3 2 3 rol 3 2

<

W =
Sllle)

s.t. C+

The first integral in the objective function is the sender’s expected payoff conditional on the
lower communication action being taken; the third integral is the sender’s expected payoff
conditional on the higher communication action being taken; and the middle integral is the
sender’s expected payoff conditional on the contract action being taken. The constraint is the
analog of the usual arbitrage condition in sender-receiver games. It ensures that types in the
interval [0, C] prefer the lower communication action to the higher one. The solution is given

by C; = {([% (2— \/1—1—%) ,% <1+\/1+1732)] ,%—i—%)} See the fourth panel of Figure

1 for an illustration. The sender’s expected utility in this case equals EU® (C3) = —0.062.
Thus, with K=1landb= %, the sender-optimal contract is unique and given by C;. The
optimal contract induces two communication actions, y; and y,, while without a contract, the
maximal feasible number of communication actions would be one. In this sense, contracting
facilitates communication. R
To see how the optimal contract changes with the parameters b and K, consider, first,
1

the case in which we keep b = 3 and relax the constraint on the number of conditions by
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Figure 1: The four candidates for optimal contracts, with K=1landb= %: % Cs,C5,C5. Two candidates

for optimal contracts with K =2 obligationally complete for b = %, C~6‘, and 3-step for b= 1, é;

5

letting K = 2. In that case, the optimal contract will be obligationally complete with the two
conditions dividing the state space into two equal-length intervals, Cj = {([0,0.5],0.583),

([0.5,1],1.083)}. For the second case, we now lower the bias to b = & and keep K =

2. There is a unique optimal contract C; = {([0.063,0.468] ,0.466) , ([0.532,0.937] ,0.934)},
which induces three communication actions. This is, again, more than the maximal number
of two actions that can be induced in an equilibrium of the communication game without
contracting.

Hence, if we keep the bias fixed while increasing the bound on the number of clauses,
contracting drives out communication. If, instead, we lower the bias while fixing the upper
bound on the number of contract clauses, communication replaces contracting. We will see
that both of these observations generalize.

In both cases, (IA( =1,b= %) and ([A( =2,b= %), the conditions in the optimal con-
tracts contain critical types, #; and 61, 0>. We will find that this fact — that at an optimum,
every maximal connected set of conditions contains a critical type — also generalizes.

5 Sender-Optimal Equilibria

In this section, we characterize sender-optimal equilibria of the contract writing game G (l? ,b)
and the contracts that the sender writes in those equilibria.

For general preferences, we begin by showing that an optimal contract always exhausts
the bound on the number of clauses. We then provide two limit results in terms of the bound
on the number of clauses, K, and the size of the bias, b. Increasing the bound, in the limit,
contracts drive our communication. Conversely, fixing the bound, if we let the bias converge
to zero, communication takes over.

If we restrict attention to quadratic payoff functions and a uniform type distribution, we
can be specific about how much communication is possible with a (not necessarily optimal)
contract. We use that to show how more communication is possible with, rather than
without, a contract. We give a sufficient condition in terms of the bias and the bound on the



number of clauses for optimal contracts to be obligationally complete. Finally, we examine
how contracts are used to structure communication. Here, we find that in any sender-optimal
equilibrium, any maximal connected union of conditions, which we call a condition cluster,
contains a critical type. If communication induces more than one action, there is at least one
cluster that separates two communication intervals — i.e., this cluster contains a critical type
that is not 0 or 1. Having such an “interior” critical type belong to a cluster implies that the
incentive constraints cannot be tight: either the highest type in the communication interval
below or the lowest type in the communication interval above that cluster does not have to
satisfy the usual arbitrage condition. Such a contract relaxes the incentive constraints and
this facilitates communication.

5.1 General Preferences

When writing a contract, the sender trades off the benefit from directly controlling the action
against the resulting rigidity. By writing a condition, the sender benefits from being able to
prescribe her preferred action for that condition. At the same time, when increasing the size
of a condition, the sender incurs both a rigidity cost and a potential communication loss:
since there is a bound on the number of clauses, any increase in the set of states covered by
the contract requires increasing the size of a condition. A downside from increasing the size
of a condition is that, on average, the mandated action matches the sender’s preferred action
less closely. This entails a rigidity cost. Increasing the set of states covered by the contract
also impacts communication. Here, the impact is ambiguous and depends on the bias. If the
conflict of interest is large, there is little role for communication, and the sender may prefer
mandating an action over ceding authority to the receiver. If, however, incentives are closely
aligned, communication can be used to make the action highly sensitive to the state. Trying
to substitute contracting for communication can result in breaking that close link and, thus,
in a communication loss.

While there is a rigidity cost and a potential communication loss from increasing the
coverage of the contract with a fixed number of clauses, it is always beneficial to use all
available clauses. There is clearly no loss in using at least one clause: take any sender-optimal
equilibrium of the communication subgame I'° that is induced by an empty contract. Then,
for any equilibrium action y, introduce a clause with the following properties: the condition
is equal to the interval of types who induce that action y; and the instruction is equal to
the sender’s favorite action given that set of types. To establish the following result, we first
show that the sender always strictly benefits from using at least one clause. The result then
follows because any clause that is used can be improved upon by subdividing it into two
clauses. Therefore, we have the following observation (all proofs are in the Appendix).

Proposition 1 If C = {(Cy, z) Y, is an optimal contract in G(K,b), then K = K.

As it becomes easier to write detailed contracts (with increasing K ), we might expect
that contracts replace communication. The following result makes this intuition precise. For

10



any measurable set ® C [0, 1] with Prob(®) > 0, define

YD) = argmax/ U'ly,0)dF(0), i =S, R.
®

Y

Before stating and proving the result, we note the following helpful observation.

Lemma 2 For allb> 0 and all n > 0, there exists a vy > 0 such that for all ® C [0, 1] with
Prob(®) > n,

(3]

/PUS(yS(G),&,b)dF(H)—/Us(y*s@),&,b)dF(G) > 7.

This observation establishes that for every sufficiently likely set of types, there is a strictly
positive lower bound for the sender’s utility gain from receiving her ideal action for every
type in that set, rather than the action that maximizes her expected payoff across types in
that set. For every strictly positive probability, this bound is uniform across all sets with
at least that probability. With this in hand, we can show that as the bound on the number
of clauses grows without limit, the probability measure of the gap in the optimal contract
converges to zero.

3 of gaps arising in sender-optimal equilibria

e(IA(, b) of contract-writing games G(I?, b), K= 1,2,...,

Proposition 2 For any sequence {Lz}

lim Prob(Lz) = 0.

K—o0

The proof shows that, not leaving any gaps and using all available clauses, with an
increasing number of clauses, it is possible to approximate the sender’s ideal payoff arbitrarily
closely. For any gap, on the other hand, we know from Lemma 1, that there is a limit to how
many actions can be induced. Thus, with a nonvanishing gap, there will be a nonnegligible
set of types who receive a common action. Lemma 2, however, implies that, on this set of
types, there will be a significant loss relative to the sender’s ideal payoft.

If, instead, we fix the bound on clauses, with sufficiently small biases, communication
dominates nearly all the information processing.!!

Proposition 3 For any sequence {L£;}5°, of gaps in sender-optimal equilibria e(b;) of games
lim Prob(L;) = 1.

1—>00

HFor this result, we assume, in addition, the following continuity property: For any sequence of biases
{b;}32, with lim;_, b; = 0 and any sequence {e(b;)}32, of sender-optimal equilibria in the games {T'°(;)}5,,
the sender’s payoffs in those equilibria converge to f[O,l] US(y®(0),0,0)dF(6). Spector (2000), Agastya, Bag
and Chakraborty (2015), and Dilmé (2018) provide conditions on primitives that ensure that this continuity
property holds.
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Here, the proof establishes that without any clauses, as the bias approaches zero, there
is a sequence of communication equilibria that approximate the sender’s ideal payoff. If, on
the other hand, there is a nonvanishing set of types for which actions are controlled by the
contract, then there must be one nonnegligible set of types who receive a common action.
Once again, Lemma 2 implies that on this set of types, there will be a significant loss relative
to the sender’s ideal payoff.

5.2 Quadratic Losses

We now assume that the players’ payoff functions are quadratic. The ability to write clauses
changes the communication environment and the number of actions that can be induced
through communication. The following result holds without imposing additional assumptions
on the type distribution. It characterizes the maximal number of communication actions that
can be induced if we are not concerned about optimality.

Proposition 4 For any b, there exist a K and a contract C such that there is an equilibrium
of the communication subgame I'C with n induced actions if and only if n < 1+ %

Note that in the proposition, K is chosen with the objective of maximizing the number
of communication actions. For the proof of sufficiency, we construct equilibria in which
communication intervals are very short, and clauses are used to generate just sufficient
separation to satisfy the sender’s incentive compatibility.

For the remainder of the paper, we assume that the type distribution is uniform on [0, 1].
The following well-known fact will be useful to indicate how to improve the sender’s expected
payoft.

Observation 1 Suppose that, given a distribution over [0,0] C [0,1], the receiver takes
an optimal action. Then, the sender’s expected payoff is decreasing in the variance of that
distribution.

As an illustration of how we use this observation, see Figure 2. Suppose that we have
a contract C; such that in a sender-optimal equilibrium et of T'“* for some action y, the
set [0,0] N L(Cy) is the set of types inducing that action. Suppose, further, that there is an
alternative contract Cy that differs from C; only in that conditions Cj, 5 € J, in the interior
of [6,0)] are replaced by conditions i C o, A],j € J, such that for each j € J, Ciis a
translation of C; and [¢,0] N £(Cy) forms an interval. Then, if T has an equilibrium e
in which types in [0, 1] \ [¢, 0] behave as before and types in [6,0] N £(Cy) send a common
distinct message, the sender’s payoff from 2 exceeds that from ‘.

A second way to improve the sender’s payoff also proves useful.

Observation 2 Let 0, < 0; < 0, < 9j and 5j —0,—0 > 0; — 0, + 0. Suppose that the
receiver talies action y = w for types in (Qi,éi + (5) and action_y? = w for_types
in (Qj + 9, Qj) . Then, the expected sender-payoff conditional on (Qi,ei + 5) U (Qj + 6, Hj) 1S
imncreasing in 0.
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Figure 3: A payoff improvement by translation of C.

For an illustration, see Figure 3, in which the left panel depicts 6 = 0. Enlarging (shrink-
ing) a communication interval increases (decreases) the variance in this interval. Considering
two intervals of different lengths, if the smaller interval is enlarged by the same amount ¢ as
a larger interval is decreased, risk aversion implies that the gain in the larger outweighs the
loss in the smaller. Equalizing the lengths of the intervals reduces the expected conditional
variance.

We are now equipped to study the sender’s problem. We first compare the maximal
number of receiver actions that can be induced in equilibrium in our setup with the maximal
number in the standard CS game without a contract. Proposition 4 states that the max-
imal number of actions that can be induced in an equilibrium of an appropriately chosen
communication subgame equals

) 1
n .= \‘1 + Q_bJ .

By contrast, the maximal number of actions that can be induced in a CS equilibrium with
a uniform type distribution equals

S E R Fa
LI 1|

1—1-\/1—#1 <1+1
2 4 2b 20

Thus, for sufficiently small b, the maximal number of actions that can be induced in an equi-
librium of a suitably chosen communication subgame strictly exceeds the maximal number of
actions than can be induced in an equilibrium of the corresponding CS game. With b = %,
for example, we have n = 6, whereas n* = 2.

In the general setup, Proposition 2 shows that if we increase the number of clauses,
contracts drive out communication. For the uniform-quadratic setting, the next proposition

For b < %, it is the case that

13



gives an explicit number of clauses such that an optimal contract covers the entire state
space.

Proposition 5 If}? > %, then any optimal contract is obligationally complete.

The intuition for the proof is similar to that for Proposition 2. An upper bound on what
can be achieved from communication is given by full revelation. Using this fact, we get an
upper bound on the sender’s payoff from a contract that leaves a communication region of
size A. Differentiating this upper bound with respect to A, we find that the derivative is
negative for sufficiently large K. Hence, for any sufficiently large K, we want to reduce the
size A of the communication region to zero.

The conditions in a contract can be separated or contiguous. For convenience, we intro-
duce the following notation. Given a contract C = {(Cy, zx)}_,, a union of conditions Cj
is maximal connected if it is connected and not contained in a larger connected union. We
call each maximal connected union of conditions C' a condition cluster.

The following proposition shows that no condition cluster can be strictly inside of a
communication interval. Moreover, if there is influential communication, there is at least
one condition cluster that contains an interior critical type.

Proposition 6 Suppose that the contract C = {(Cy,x) | is optimal in the contract-
writing game G, and the equilibrium €€ is sender-optimal in the communication subgame
['C. Then, for every condition cluster C, there is a critical type 0 with C N {0} # 0. If,
in addition, the equilibrium e induces at least two communication actions, then there is a
condition cluster C and a critical type 6 # 0,1 with C N {0} # 0.

We know from Proposition 1 that an optimal contract uses all available clauses. The
more clauses the contract has, the less rigid it is. Since the number of clauses is finite, how-
ever, there is always some residual rigidity. The sender can reduce this rigidity by writing an
obligationally incomplete contract. Introducing a gap allows at least for babbling communi-
cation, which makes it possible to induce at least one additional action. Thus, leaving a gap
makes the actions more sensitive to the state of the world. If, in addition, the bias is small,
Proposition 3 shows that it becomes feasible and attractive to use communication to induce
a large number of actions. With all available clauses being used and communication inducing
more than one action, Proposition 6 shows that there is an interesting interaction between
contracts and communication. The sender uses contracts not only to impose her favorite
actions, but also to structure communication. Contract clauses are used to separate events
that induce distinct communication actions and, therefore, to relax incentive constraints in
the communication game. This highlights the dual role of contracting as both substituting
for and facilitating communication.

Intuitively, the sender uses condition clusters to relax the sender’s incentive constraints
that pin down the bounds of the communication intervals. The first part of the proof of
Proposition 6 shows that there is a critical type contained in every condition cluster. The
second part then proves that, for influential communication, there is a condition cluster that
contains an interior critical type.
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The proof of the first part proceeds in several steps. We ensure in each step that the
sender’s payoff increases: the typical argument is that properly translating a condition cluster
increases shorter communication intervals while it decreases longer intervals. At the end of
the first part, we check that, indeed, we obtain an equilibrium. In the first step, we use the
fact that there can be no more than one condition in any communication interval (see Lemma
A.3 in the Appendix). We consider a candidate-optimal contract C and a corresponding
equilibrium e¢ with a communication interval containing a single condition in its interior.
We then translate that condition to the lower bound of the communication interval. The
new contract is Cy. In the second step, we adjust the strategies in the communication game
such that, locally (in between condition clusters), incentive compatibility is restored. The
resulting game is called I'“!, with contract C; = Cy. We sketch steps one and two in Figure
4.

PPy ‘ hd L/_/_/_/_/_LTLA A |V ) ‘ A g 4 0
ez 9i+1 91‘4_2
i Yi+l Yi+2 Yi+3
Ste 1: C e ‘ L2 ”77777% T ‘ Py 7z
92 9i+1 91'4_2
Step 2: Cy WZQ% yi;&-l . ?/i;&-2 % %’:3 = s
0; Oit2

Figure 4: Sketch of the first two steps in the first part of the proof of Proposition 6.

In order to restore incentive compatibility locally, we have to raise the action ;2. This
makes the action less attractive for the type 6 that is at the top at the newly created condition
cluster (see Figure 5 for an illustration). In fact, it may make action y;; more attractive
than y;.o. In the third step, we address incentive-compatibility problems of this kind — that
is, for types that are separated by condition clusters. To do so, we identify the highest
condition cluster such that a type 6 at the upper boundary of that cluster prefers to deviate
to a message inducing an action below the cluster. In multiple steps that maintain the local
equilibrium conditions, we properly translate the respective condition cluster upwards to
restore incentive compatibility for type 6. The resulting contract is Co. We iterate the third
step for all lower condition clusters to obtain a global equilibrium.

In the second part of the proof, we show that the sender’s payoff can be increased when
more than one action is induced in equilibrium and all condition clusters are at the extremes.
For an illustration of the steps in the argument, see Figure 6.

The first panel of Figure 6 shows a contract C with a single condition located at the left
extreme of the type space and a corresponding three-step communication equilibrium. We
replace contract C by a new contract C’ that translates the condition upwards such that the
first critical type #; becomes its new upper boundary. Since we do not change the length
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Figure 5: Sketch of the third step in the first part of the proof of Proposition 6.
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Figure 6: Second part of proof: payoff improvement by translations.

of any communication interval, payoffs remain the same. However, type €; now strictly
prefers action y, over yj. Moreover, the length of the communication interval inducing
action y; is smaller than the length of the communication interval inducing y,. Together,
this implies that we can translate the condition further upwards to C* while maintaining
incentive compatibility and increasing payoffs. This shows that the contract C that we
started with cannot be optimal.

6 Conclusion

In this paper, we study how incomplete contracts are shaped by the anticipation of the arrival
of private information. In such an environment, the principal may prefer to write obliga-
tionally incomplete contracts in order to take advantage of the communication opportunities
afforded to her by the existence of gaps in the contract. We find that the principal always
writes the maximal number of clauses into the contract, but not necessarily has the contract
cover all states of the world. With little conflict of interest, communication drives out con-
tracting and vice versa. We show that whenever there is influential communication, optimal
contracts are used both to substitute for and to help facilitate communication. Thus, the
possibility of using communication as an alternative to contracting shapes optimal contracts,
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and optimal contracts affect the form that communication takes.

There are numerous natural variations of this idea. One can, for example, allow transfers
(we do this in a simple example in the Appendix), consider alternative restrictions on the
allowable contracts, or allow for different information structures, including having a fraction
of the sender’s private information be revealed at the interim stage. We expect the main
insight of this paper — that contracts are used, in part, to facilitate communication — to
survive.
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A Appendix

Example Section 4 In the CS game I'°, the only equilibrium for b = % is the babbling
equilibrium, where the receiver takes the action y = % The resulting payoff for the sender

is given by
1 1\2 1
— b— =) ds=—— —b*> = —0.194.
/0 (S+ 2) T

The sender’s expected payoff from an obligationally complete contract prescribing the
optimal instruction z = % + b is given by

1 1 2 1
- b—-—b) ds=—— = —0.083.
/0 (s+ 5 ) s - 0.083

The sender’s problem of writing an obligationally incomplete contract ([O, C ,§+ b>

allowing for one-step communication is given by

c Val 2 1 Yai 2
1
max/ —<s+b—€—b) ds—l—/ —(8~|—b—0;) ds

1-C 9 18, —2
:mgx—%<12b2+(1—0) )——:max——————,

14-4b2
2

Solving the first order condition yields C' = = 0.722 and a resulting payoff for the

1+462)°
sender of —% — % — % + % + % = —0.064.

The sender’s optimization problem for writing an obligationally incomplete contract
<[Q ,C % + b) allowing for 2-step communication is given by

c 2 ol — 2 0 Tl 2
max/ —<S+b—c) d5+/ —<5+b—(o+c+b>> ds+/— S+b—( + ) ds.
c¢.c Jo 2 c 2 c 2

(C+1)
2

Sle!

where the (sender’s IC) constraint ensures that types below C prefer to induce the lower of
the two communication actions. Simplifying the objective yields
¢ ., (-0 (1-0)
= O - _
12 12 12

(1262 + (1-0)7).
Solving the first order conditions results in

C=[C,7C) = [% (2 Vit 12b2> , % (1 +VIT 12b2>] — [0.157,0.843) .
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Note that the solution satisfies the sender’s IC constraint for all b € (i, %) This follows
from the equivalence of the following three inequalities and the fact that the third inequality
is satisfied for all b.

C
Q—i—b—gg 5 —C-b
%(2—\/1+12b2)+b—7<2—\/1+12b2 g%(1+\/1+12b2>+%—7(2—\/1+12b2)—b
%+2b§§\/1+12b2.

The sender’s resulting payoff is —0.062. Comparing the resulting payoffs for b = %, it is
straightforward to see that

EU%(Cy,1) < EU? (([0, 1], % + b) ,1) < EUS(C;,1) < EU® (C3,2) . (1)

For biases b € (}L, %), the first two inequalities follow since we have

1
EUS(Co,1) = — 5 b

1 1

EUS 1,=+b),1)=——

<pvs (0l 5 +0) 1) =5
1

S (* _ _i 2 _ - ’
<EUS(Ci ) =—5+ (0 -7) -
To show the last inequality in (1), EU® (C;,1) < EU® (C;,2), we have to show that

-1 =L —pt -2 Lo L (54 4T+ 1202 + 4802 (=3 + /1 + 1207)). Note that

2 7 48 S 108
for b = 0 we have

(b2—1>2—i: Lt _1 (—5+4¢m+48b2(_3+m)).

12 12~ 108 108

Moreover, for b = %, we obtain

1\* 1 1 1
(bLZ) —E:—E:m(—5+4\/1+12b2+48b2 (—3+\/1+12b2)).

Thus the difference between these utilities, EU® (C3,2) — EU (C{, 1), is zero at b = %. The
result follows, because the difference between these utilities is monotone decreasing in b for
allb e (§,3):

d
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1 48b 57603
:b—4b3+—( n +96b<—3+\/1+12b2)>
108 \ 1+ 1262 1+ 12b2

b

2+

<—5+L + b’ (—1 L))
3 V1 + 1202 V14 1202

b
-— (5 L1 — 41T 12b2> .

The expression on the right-hand side is negative if and only if 5+ 12b* > 44/1 + 12b2. Since
both sides of the inequality are positive, this is equivalent to 144b* — 726> +9 > 0. The
polynomial on the left-hand side has two zeros, b = j:%, is strictly positive at b = 0 and is
therefore strictly positive for b € (}l, %) . This implies that the derivative of the difference of
the utilities is strictly negative for b € (4, 1). Hence, we have that EU® (C3,2) > EU® (Cj, 1).

Finally, consider K = 2 and b = %
3-step equilibria is

C 2 C ral 2
max/1<s+b01> ds/ (s+b<cl+cl+b>) ds
C1,C2 0 2 c, 2

C — 2 ol — 2 1 — 2
—/2<s+b—cl+02) ds—/ <S+b—<02+02+b>> ds—/ (s+b—02+1> ds
Ch 2 c, 2 Cs 2

The sender’s problem for optimal contracts with

subject tle—i—b—% < 01—502 -C, —band02+b—clgc2 < 02;1 —C,—0b.
For b = % the contract that solves this problem is
C; = {([0.063,0.468] ,0.466) , ([0.532,0.937] ,0.934) } .
This contract yields an expected sender payoff of —0.01874. U

Proof of Proposition 1. For any measurable set ® C [0, 1] with Prob(®) > 0 define

YD) = argmax/ U'(y,0)dF(9), i =S, R.
o

Y

Suppose C is an optimal contract in G([A( ,b). If the contract is empty, K = 0, or the union
of conditions has measure zero, p <UkK:1 Ck) = 0, then I'C is a CS game. Hence, each

equilibrium action in an equilibrium of I'C is induced by an interval of types. Consider a
sender optimal equilibrium e of I'C. Since there are only finitely many equilibrium actions,
there is an action g that is induced with positive probability. Let [0, 5] be the closure of the
set of types who induce action § in €. For every € > 0 such that 7 + ¢ < 0, there is a set
(7,7 +¢] C [0,0] with y**([r,7 + ¢]) = §. Evidently, also y*# ([¢,6] \ [, 7 +¢]) = §. Since
y°(0) # y®(#) and both y° and y® are continuous and [0, 1] is compact, there exists gy > 0
such that |y%(0) — y®(0)| > & for all § € [0, 1]. Continuity of y* and y® and compactness of
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[0, 1] further imply that there exists § > 0 such that |y°(0) — y®(0+6)| > &, for all § € [0, 1].
Hence, if we choose ¢ < § then y**([r,7 +¢]) > y*®([r,7 + €)] = §. Hence, the alternative
contract C' = {(C4, x1)}, where C; = [7,7+¢)] and x; = y*°([7, 7 +¢]) allows an equilibrium
e in T in which types outside of [r,7 + ¢] induce the same actions and receive the same
payoffs as in the equilibrium e¢ in I'C, while the sender is strictly better off if condition C;
is realized. It follows that K > 1, and therefore an optimal contract is never empty.
Consider any contract C with K < K and a sender optimal equilibrium in the communi-
cation game I'C. Consider replacing the contract C by a contract C’ that splits the condition

Ckx = [Ck,Ck] (taking the condition Ck to be closed is without loss of generality) into
two conditions Cx = C, C’) and Cx = [C‘,@K) with ')y < C < Cx and leaves all other
clauses unchanged. Then US, < 0 and US, > 0 imply that y*5(Ck) < v*5(Cx) < y*5(Ck),
which implies that the sender is strictly better off under the new contract, conditional on
the event Cf being realized, while incentives in the communication games I and I'C are
identical. This implies that optimal contracts must have K = K. [l

Proof of Lemma 2. By continuity of f and compactness of [0, 1], f is bounded. Therefore,
for all > 0 there is an ¢y > 0 such that for all ® C [0, 1] with Prob(®) > 9§, ¢(®) > €
(where ¢ denotes Lebesgue measure). Hence, for all § > 0 there is an ¢; > 0 such that for
all @ C [0, 1] with Prob(®) > §, for all § € [0, 1] there exists ¥ C & such that |6 — 0| > €
for all " € ¥ and £(¥) > ¢;. This and the fact that y*9(®) is the ideal point of some type
6(®) € [0,1] imply that for all § > 0 there is an €; > 0 such that for all & C [0, 1] with
Prob(®) > 9§, there exists ¥ C & such that |0(P) — 0’| > ¢; for all ' € U and ¢(V) > €.
Since the derivative of y° is strictly positive and continuous it has a strictly positive
lower bound. Therefore, for all ¢, > 0 we can find €2 > 0 such that for all 6,6 € [0, 1] with
0 — 0| > ¢, we have |y®(0) — y°(')| > 2. This and the continuity of U imply that for all
€1 > 0 we can find e3 > 0 such that for all 0,0’ € [0, 1] with |§ —¢'| > €, we have U®(y*(8), 0)
- US(y5(0),0) > e3. This, the fact that f is everywhere positive, and the observation at the
end of the previous paragraph imply the statement. 0

Proof of Proposition 2.  Suppose not. Then there is a sequence of gaps {Ef(}‘;(f’:l
with a subsequence {Lz }22; and x > 0 such that Prob(Lz ) > & for all 4. From Lemma

1, there is an upper bound N on the number of actions induced in any equilibrium of any
communication subgame. Hence for every K;, i = 1,..., there is an action that is induced
by a subset @z of Lz that has at least probability % Hence, by Lemma 2 there exists
€ > (0 such that

I

for all « = 1,.... This implies that for every ¢« = 1,... the sender’s payoffs in e(}?i, b) are
bounded from above by

US(4(6),6)dF (6) — / US(yS(®5 ), 0)dF(6) > ¢

R, Pz,

/ US(y°(0),0)dF(0) — e.
[0,1]
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Continuity of ¥ follows from the maximum theorem and uniform continuity from the
fact that [0,1] is compact. By assumption U® is continuous. Uniform continuity of U®
follows from compactness of [mingepo,1] y°(6), maxgep,1 ¥°(#)] x [0,1]. For any K, partition
(6o, 61] and I, := (051,00, k =2,..., K.

the interval [0, 1] into K equal length intervals I :
,1] — R by the property that U}%(@) =

For each K = 1,2,..., define the function UI% : [0

US(yS(6y),0) for all @ € I, and all k = 1,... K AThen f[O,l] U[%(Q)dF(H) is the sender’s
payoff from writing the contract Cz = {(Cy,xx) -, where C = I, and z; = y°(6;).
Uniform continuity of 4° and U® imply that for any € > 0 we can choose K sufficiently large
(and therefore ¢ := 6, — 6;,_; appropriately small) such that 0 < U (y®(9),0) — UI%(Q) <€
for all 6 € [0, 1]. Therefore we have

lim [ US@)aFe) = [ U5 6),0)dF ),
R—o0J[0,1] [0,1]

and therefore a contradiction with the supposition that e(I?Z-, b) is sender optimal in G (IAQ, b)

foralle=1,2,.... 0

Proof of Proposition 3. Suppose not. Then there is an €y > 0 and a subsequence {£;}32,
(reindexed for convenience) with Prob(L;) < 1 — ¢, for all j. Hence, for every j there is a
condition CV in the contract C7 that is part of the equilibrium e(b;) with Prob(C7) > <. By
Lemma 2 there is an ¢; > 0 such that

/ US(y°(6),6,0)dF(0) — / US (y*3(C7),0,0)dF(0) > €
Ci Ci

for all j. The space of intervals of length ¢, %0 < ¢ < 1 is compact. Hence, the sequence

o0

{Cy }32, has a convergent subsequence. After reindexing, use {CY 521 to denote that subse-

quence in the sequel, and denote the limit by C. By continuity,
| U5 0).0.010860) ~ [ US9(C),0,0)aP(0) = c1
c c
Hence, appealing to continuity again, for sufficiently large 7,
| U ®).0.5)d80) - [ 0SS, 0.0)aP(0) = .
Ci Ci
This implies that for sufficiently large j in this subsequence the sender’s payoffs in the
equilibria e(b;) are bounded away from f[o g U S(y%(0),0,0)dF(0). This contradicts optimality
of the equilibria in the sequence {e(b;)}, since by the continuity property the communication

games I'(b;) have equilibria whose payoffs converge to f[o 1 US(y®(9),0,0)dF(0) with j —
00. 0

Proof of Proposition 4. Consider necessity first. For each action y; with j < n
that is induced in equilibrium define ¢; := sup{# € [0, 1]|¢ induces y;}. The receiver’s ideal
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action if he knew the type to be t; would be y = t;. Therefore, by single crossing, y; < t;.
Incentive compatibility requires that (¢;4+b—1y;)? < (t;+b—y;41)*. Since y;41 > y;, we have
tj+b—y; > t;4+b—y,41. Thus incentive compatibility and the fact that ¢;+b—y; > t;—y; > 0
imply that

ti+b—y; <yjp1—t; =0,

and since t; > y;, we need y;,1 —y; > 2b. Since every action is induced by a positive measure
of types and by the single crossing property, we have y; > 0. Hence, if n actions are induced,
then (n —1)2b < 1.

For the converse, consider a contract C with n—1 conditions Cy, k = 1,2,...,n—1, where
each condition is of length 2b+ ¢, any two adjacent conditions C} and Cj; are separated by
an interval (Cy, Cy,,) of length €, and Cy = [¢,2b + 2¢]. Since we assume that n < 1+ &,
we can choose € > 0 such that ne + (n — 1)(2b+¢) = 1, and hence such a contract exists. In
the communication subgame I'C let the sender use a strategy o€ that prescribes that types
in any interval (ﬁk, C +1) separating two adjacent conditions C} and Cj,; send a common
message different from the message sent by any other such interval. Then the receiver has a
best reply p° to the sender’s strategy o€ that prescribes an action y;, € (ék, . +1> for the

message send by types in the interval (@, . +1)' Notice that
Qkﬂ—l—b—@k:b—l—e:%—l—e—b:akH—Qkﬂ—b.

Therefore, (for any distribution) given the receiver’s strategy, types in (Cj, Cy,;) have no
incentive to mimic types in (6k+1, C +2) and a fortiori any higher types. Similarly, since

Cop1—Cr—b=c—b<3b+e=Cr+b—C,

types in (Uk, . +1) have no incentive to mimic types in (ék_l, c k) and a fortiori any lower
types. This implies global incentive compatibility for the sender strategy o¢ against p°.
Hence (ac, pc) is an equilibrium strategy pair for the communication subgame I'C. O

Proof of Proposition 5. By Observation 1, the expected payoff from partitional commu-
nication is always bounded from above by the expected payoff from fully revealing commu-
nication. Therefore, the expected payoff from a contract with K conditions that specifies a
communication region of size A is bounded from above by

(1-X)2 1

N 4K2 7 4K’
Therefore, for K > % it is optimal to reduce the size A of the communication region to zero.
U

The derivative of this expression with respect to A\, —b? + is negative for % >
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Lemma A.1 Suppose that for an equilibrium e€ there is a communication interval (Q, 5) for
which the conditions Cy, £ = 1,...,k, are the ones satisfying C, C (Q, 5). Then the action
induced by types in (Q, 5) NL(C) is

—2 . k=2 k 5 o
R ((9,8) " £(C)) = 20 2 Cet 2 G 20
2 0= Cot Dy Cr—0

Proof of Lemma A.1. The action induced by the types in ((6,8) N L(C)) solves

C1 oy CéJrl oy 9 ,
m;mx—/e s—y S—Z/ s—/ (s —y) ds.

Cy,

The FOC is given by
(Cr=y ==’ + > (Con—9)" =D (Ce—p)"+(F-y) = (Ce—y) =0.

Rearranging, we get

k—1 k—1 k—1 k—1
<Q§ P+ 2, Y T+ _Ui>_2a (Ql —0+> Cpy— Z@M—@) =0,
/=1 /=1 /=1 /=1

equivalent to (—Q2 TR Sy ey i 65 + §2> — 2a (—Q 3 O -3 Tt 5) = 0.
We conclude by observing that the SOC is negative. O

Lemma A.2 Suppose that for an equilibrium €€ there is a communication interval (Q, 5)
such that the following holds: the conditions Cy, £ = 1,...,k, are the ones satisfying Cy, C
(Q, @), and the boundaries of the conditions satisfy C, > 0, Cr < 0, and fori < j, C; > Ci_,
ifi > 1 and C; < Cyiy if j < k. Then, for any sufficiently small ¢ > 0, there exist § > 0 and
a contract C' that differs from contract C only in the following way: condition C; is replaced by
its (—¢)-translation, condition C; is replaced by its §-translation, these translations continue
to satisfy C;, C; C (Q, 5), they do not change the ordering of the conditions, and

B((0.9) N L) =y ((6.9) N LC)).

Any e > 0 and 6 > 0 for which this is the case satisfy § = 60’ % .

Proof of Lemma A.2. Replacing C; by its (—¢)-translation raises the action y*# ((Q, 5) N

L(C")) and replacing C; by its d-translation lowers it. Furthermore, y*% ((6,0) NL(C")) varies
continuously with € and §. Thus, existence follows from continuity.
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By Lemma A.1,

—92 . =2 k > 2
v ((6,0) N L(C)) = 19_ Zlk=1 Cl + 22:1 i -9 .
20-2L 0+ -0

Similarly, y*% ((Q, 5) NL(IC)) =

152 - Zl;ﬁi,jgl? - (61' B 5)2 T (aj + 5)2 + Zl;éi,leQ + (Qi - 5)2 + (Qj + 5)2 B Q2
20— Zzﬁ,jal - (ai - 5) - (6]- +5) + Zl;«éi,jgl + (Qi - 5) + (Qj +5) -0

Setting both expressions equal to each other and noting that the denominators are identical,
we can simplify to get

O~ T+ 0+ == (Ci=e) = (C;+0) +(Ci =) +(C; +9)".
Hence, € (C; — C;) =6 (C; —Qj). m

Lemma A.3 For any optimal contract C and any communication interval (0,0) of a sender-
optimal equilibrium €€ of the communication subgame I'C there is no more than one condition

C with C C (0,0).

Proof of Lemma A.3. Suppose that the contract C contains more than one clause (C, z)
with C' C (6, 0). Since there is a finite number of clauses and the corresponding conditions
are ordered, there is a minimal condition, C,,, and a maximal condition, C.,,.,, satisfying
Cow C (0,0) and C... C (0,0). We now show that we can improve upon the assumed

contractC. For any ¢ > 0 let 6 = e Cmin=Cuin  Congider ¢ > 0 such that ¢ < €. — 6 and

Crnax—Clrnax ~min
§ < 0—C,,... Consider the contract C’ which differs from contract C only in that the clauses
(Crnins Tanin) aNd (Clas Trnax) have been replaced by the (—e)-translation of (C,,, ) and
the 0-translation of (Ci.., Tmax)- Let 9 be the action induced by types in (6,60) N £(C) in
the postulated sender optimal equilibrium . By Lemma A.2, if all types in (8,0) N £(C")
send a common message m(y) that is among the messages to which the receiver responds
with action  in €€, then m(4§) also induces action ¢. This implies that the game I'Y has
an equilibrium e in which the receiver strategy is the same as in €, the sender strategy is
the same for all types in £(C")\ (6,0), and types in (8,0) N L(C') send m(§). The change in
payoffs from replacing the contract-equilibrium pair (C,e€) by the pair (C’,e") is given by:
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6min Qmin
/ —(s—l—b—g)2ds—/ —(s+b—9)ds

Cminfs QminiE
Qmax+§ 6n)ax+6
+/ —(s+b—z))2ds—/ —(s+b—9)"ds
Qmax 7max
Crin — C.., c
= é‘u Cmax+0 O i Omax_c E
Cmax - Qmax ( ( mln) ( _de)

—Coin
+e (am CotCuin—C... )
[0

This expression is strictly positive since € > 0, ~C . >0, Chy—C.__ >0, and

Cmax + Q > Omm + len |:|
Proof of Proposition 6. Part I. Under the assumptions of the proposition, for every
condition cluster C' there is a critical type 0c with C N {0c} # 0:

Since for every equilibrium in which the sender mixes there is an outcome equivalent
equilibrium in which her strategy is pure, it is without loss of generality to have the sender
strategy be pure in the equilibrium e®. Denote the strategy profile corresponding to the
equilibrium ¢ by f¢ = ( ¢ C) It follows from Lemma A.3 that it suffices to look at the
case where the interior of each communication interval of the equilibrium ¢ contains at most
one condition. Hence, it suffices to show that for any £ = 1, ..., K, the condition C} does
not belong to the interior of a communication interval for the equilibrium e€.

Suppose otherwise, i.e., for the contract C and the equilibrium e there is at least one
communication interval with a condition in its interior. We will gradually replace the contract
C by other contracts and the strategy profile f€ by other strategy profiles. At each iteration
we will ensure that sender payoffs strictly increase. At the end we will verify that the strategy
profile we obtain is an equilibrium profile.

Let the equilibrium €¢ have n steps, and therefore n communication intervals I;, j =
1,...,n. For each communication interval I; let the sender send message m; and denote
the action induced by types in I; by y;. Denote the critical types from equilibrium e¢ by
QJC, j=0,1,...,n. At each replacement of the prevailing contract and strategy profile, the
number of steps as well as the number communication intervals remains constant at n. Types
in communication interval I; continue to send message m; after each replacement and the
receiver best responds to the sender’s replacement strategy. After all unsent messages, have
the receiver use the same response as after message m;. As the response to m; changes with
each replacement, change the response to unsent messages in the same way.

Step 1. Replace the contract C and the strategy profile f€ by a new contract Cy and a
new strategy profile fC:

(a) Change the contract as follows: Consider any condition Cj, such that there is a com-
munication interval I; with Cy, C (8,,0;). If 8; does not belong to a condition, replace
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Cy by its —(C), — Qj)—translation. If Qj does belong to a condition, replace Cj by the
—(C}, — 0,;)-translation of the left-open interval Cj, \ {C} }.

(b) Change the sender strategy as follows: For any communication interval I; that was
affected by a translation (i.e., there was a condition Cy, C (¢;, 0,)), after the translation
have the sender send message m; for types 6 with 0, + (Cr—C)) <0 < 5]'. For
any communication interval /; that was not affected by a translation have the sender
continue to send message m;.

(c) Change the receiver strategy as follows: Let the receiver best respond to the new sender
strategy and respond to all unsent messages the same way he responds to message m; .

We make no claim that the new strategy profile f€ is an equilibrium profile of the
communication game I'®. The question of equilibrium is addressed after the final iteration.
By Observation 1, we have a strict payoff improvement for the sender over the payoff from
e in TC if players adopt the strategy profile f¢ in the communication game I'°. R

After the replacement of the contract C by the contract Cy there is some number L < K
of condition clusters Cy, ¢ = 1,..., L. Denote the minimal (maximal) type in each con-
dition cluster C, by C, (C;). Refer to the communication interval with lower bound
C, by IT(Cy, f€) and let y*(Cy, f€) be the receiver’s best reply to beliefs concentrated
on I*(Cy, ). Similarly, let I=(Cy, f©) stand for the communication interval with up-
per bound C, and let y~(Cy, f€) be the receiver’s best reply to beliefs concentrated on
1~ (Cg, fCo) .

Observe that type C, (weakly) prefers action y~ (Cy, f°) to action y*(Cy, f€): y=(Cy, )
is no further from C, than that type’s preferred equilibrium action under the original equi-
librium ¢ and y*(Cy, f€) is no closer to C, than that type’s preferred equilibrium action

under €€,

Step 2. As noted before, the strategy profile f€ will generally violate incentive com-
patibility for the sender given the contract Cy and the receiver’s strategy. With the ultimate
goal of reestablishing equilibrium, we begin by restoring incentive compatibility locally by
replacing the strategy profile f€ by a new strategy profile f€ while leaving the prevailing
contract unchanged, i.e., C; = Cy.

Between any two condition clusters C, and C,.; with ¢ < L, and similarly between
C, and 1, restore equilibrium locally. In order to obtain a local equilibrium between C, and
C,. 1, alter the sender strategy in that range and the receiver’s responses to messages sent by
types in that range so that the receiver best responds to those messages and sender types in
that range have no incentive to mimic other types in that range. For now, ignore incentives
to mimic types between other condition clusters. We address those incentives later. Modify
strategies as follows:

(a) If none of the critical types 6€ from the equilibrium € satisfy C, < ¢ < C, 11, leave

sender and receiver strategies unchanged — they already satisfy the local-equilibrium
condition. Otherwise, suppose that the critical types §¢ satisfying C, < 6 < C, 41
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are 05, ...,05. Note that given the postulated receiver behavior in fC, type 6¢ is the
only critical type in the range (Cg, C, +1) for which incentive compatibility is violated.
Define X¢ := 0¢ — C,.

(b) In order to restore equilibrium locally between Cy and Cy, 1, consider replacing 65, . . ., 65
in the specification of the sender’s and receiver’s strategies by 6;,...,60,, where 6; =
Cotdand 0 —0; =05, — 05— 225 j =i, —1,and \° < X\ < (65, — 6F) (¢'+
1—id)+ X, The last condition ensures that the length of the second step ;. — 0; (and
thus all subsequent steps) remains positive. For types in the range (65, C, +1)> have the
new sender strategy prescribe that the sender send message m; in the interval (Cy, 6;),
message m; in (0;_1,6;), j =i+ 1,...,7, and message m;; for types in (ei,,gm) )
Otherwise, leave the sender strategy unchanged. Adjust the receiver’s strategy so that
the receiver best responds to messages m;, j = 4,...,7 + 1, given the new sender

strategy, leaving all other responses unchanged.

(c) For A = )\, type 6; (weakly) prefers the action that is induced by types in the interval
(C/, 0;) to the action that is induced by types in the interval (6;, 6;,1). If 6; is indifferent,
we are done. Otherwise, it must be the case that the length of the interval (60;,6;.1)
exceeds that of (Cy, §;). Consider increasing A from A = X¢ to the value \” at which the
lengths of these two intervals become the same. At that point type 6; strictly prefers
the action that is induced by types in the interval (6;,60;,1) to the action that is induced
by types in the interval (Cy, 6;). Therefore, existence of a X' with A’ > X > 6; — C,
that restores equilibrium locally between C, and Cy,; follows from continuity the
payoff function, the intermediate value theorem, and the fact that as we vary X in
the manner described, the arbitrage conditions for types 6;, j = ¢+ 1,...,¢ continue
to be satisfied, since the lengths of adjacent intervals (0;_1,6;), j =i+ 1,...,7, and

(ei,,gé,ﬂ), continue to differ by 4b.

The total change of behavior required to restore equilibrium locally between C, and Cy 1,
as just described, can be decomposed into i7" + 1 — 7 steps. In the kth step A is increased
by Z’};:l)‘_c -, the intervals (6;4(x—1), 0iprr) With 1 < k" < k are all shifted up by that amount,
and the interval (0,45 1, 60;1%) is reduced in size by the same amount by keeping 6., fixed
while 6;,4_1 increases. In the final step the interval whose size is reduced is (91»/, C, +1)' By
Observation 2 we have a payoff improvement at every step. Denote the strategy profile that
results from restoring local equilibria in the game I'“* between all pairs of adjacent condition

clusters by f¢.

Step 3. We next turn to addressing incentive constraints that involve types that are
separated by condition clusters.

Observe that when we replace € by f¢ in I'*, for any condition cluster C;, we have
[IH(Cy, fO1)| = |[TT(Cy, f@)| and |I7(Cy, )| < [I7(Cy, f%)|. In combination with type
C, having preferred action y~(Cy, f°) to action y*(Cy, f€) prior to the strategy-profile
replacement, this implies that none of the types equal to or less than C,, have an incentive
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to induce any action greater than y~(Cy, f) available to them given the profile f€'. There-
fore, if none of the types Cy, £ = 1,..., L have an incentive to induce an action less than
yt(Cy, f€) available to them given the profile f1, the combination of local equilibria forms
an equilibrium overall.

If instead there is a type C; who prefers inducing an action less than y*(Cy, f€!) that is
available given the profile f¢, let ¢ be the maximal ¢ such that this is the case. Consider
the set of actions that are induced by types 6 > 6@. Refer to the types who are indifferent
among adjacent actions in this set of actions as (-critical types. Use { to denote the minimal
¢ > 0 such that there is an (-critical type 6 c [Qg,ﬁg), if there is such a type. If there is no

{-critical type 0 € [Qg,@) for all ¢ > ¢, proceed without introducing ¢. Note that if this
case we have that either Cy is an (-critical type for all £ >  or C; is the rightmost condition
cluster ({ = L). X

Note that if 0,_1,0; and 60,4, are {-critical types such that §; = C, and neither ¢,_; nor
6;+1 belong to a condition cluster, then we have

0 b 0,1 + (0 —2(64 -C)) _ 9j+12+ 0; _ 6, -

b, (2)
which is equivalent to
Oj1—0;=0; — 0,1 +4b+ (C, — C,). (3)

This is the standard arbitrage condition in the CS uniform quadratic example extended to
the case where the (-critical type 0; is the upper endpoint of a condition cluster. If 6, ;
belongs to the condition cluster Cy_;, replace 8;_; by C,_; in the above expression, and if
0,41 belongs to the condition cluster Cyy, replace 0,41 by C,_ ;.

Consider replacing the condition cluster C; by its A translation (for notational conve-
nience also denoted by C;) for values A > 0 that make it possible to

(a) maintain local equilibrium for types in the range (C;_,, C;) (if £ > 1, and in the range
(0,C}) otherwise) (this is achieved by choosing A sufficiently small and increasing the
length of each communication interval in this range by A divided by the number of
communication intervals in this range),

(b) maintain local equilibrium in the range (65, C;) and preserve indifference for all types
0 such that §# = C, with ¢ < ¢ < ¢ (by condition (3), this is achieved by choosing
A sufficiently small and reducing the sizes of communication intervals in the range
(C;, C;) all by A divided by the number of communication intervals in this range).

For each A, denote the strategy that maintains local equilibrium for types 6 > 65571 by f.

Note that if, prior to the X translation of C}, type 6lg prefers inducing an action less
than y* (C;, f€1) that is available given the profile f¢!, as postulated, it has to be the case
that {I*(Cg, fcl)| > {I*(Cg, fcl)|. As a consequence of replacing C; by its A translation
and maintaining local equilibria in the ranges specified above, the lengths of communication
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intervals in the range (C;_,,C;) increase and the lengths of communication intervals in the
range (C;, C;) decrease. It is easily checked that for all A between A = 0 and the value of
A that equalizes |IT(Cy, f*)| and |I7(Cy, f*)| the local equilibria in the ranges (C;_,, C;)
and (6@, C;) can be preserved, as described above. Hence by payoff continuity and the
intermediate value theorem, there exists a value of A for which we have an equilibrium in
the auxiliary game that is obtained by restricting the type space to (6271, C;), leaving all

condition clusters C with ¢ # / unchanged, and replacing C; by its A-translation. Denote
this value of A by X. Monotonicity of type 65’5 payoff differential from actions y™(C;, f*)
and y~(Cy, f*) implies that )’ is unique. By a similar argument there exists a unique value
of A such that local equilibria in the ranges (C;_,,C;) and (C;, C;) are preserved as above

and, in addition, we have § = C;. Denote this value of A by \”.

Define Ap, := min{\, \"} and note that with the A, translation of C; we have 0 e
[C,,C,]. Let n; be the number of communication intervals in the range (Ce 1, C;) and
ny the number of communication intervals in the range (C;, C;). If we replace C; by its
Amin translation while preserving local equilibria in the ranges (C;_,,C;) and (Cw C;) as
indicated above this increases the length of each communication interval I;, in the range
(C; ,,Cy) by m1 and lowers the length of each communication interval /; in the range
(C;, Cp) by 2min,

We can decompose the replacement of C; by its Apip-translation and the corresponding
preservation of local equilibria in the ranges (C;_,, C;) and (C}, C;) into n - ny steps of size
n“‘;{‘ Define 1;(0) := I;. At the rth step, r =1,...,ny - no,

(1) identify two intervals I;(r) C (C;_,,C;) and Li(r) C (C;,C; ) among those that
have been established by step r — 1 and which satisfy |I;;(r)| < [I;; + 2min| and |Ln(r)] >

ni
| I o Amin
"
J no

2) increase the length of the former by ~ Aunin i by changing its right endpoint,
3) reduce the length of the latter by the same amount by changlng its left endpoint,
4) replace all intervals I;(r) C (C;_,,C;) with j > j/ by their 2=ix_translation,

)
)
)
5) replace all intervals I;(r) C (C;, C;) with j < j” by their 2min translatlon
)
)

Y

replace the C; that resulted from step r — 1 by its Auin translatlon

have the sender send the same message in 7;(r) that she sent in I, (7‘ — 1) for all j,
(8) have the receiver best respond to the the new sender strategy.

By Observation 2 we have a strict payoff improvement at every step.

(
(
(
(
(6
(7

Denote the contract that results from replacing C; by its Apip-translation by C,. Denote
the strategy profile that results from preserving local equilibria in the ranges (65_1, C;) and
(C;, C;) as described above while otherwise being identical with f€ by f¢.

If Amin = V', identify the maximal ¢ such that type C, prefers inducing an action less
than a™(Cy, f©2) that is available given the profile f€2, if there is such an ¢. Otherwise we
are done. Note that this ¢ necessarily satisfies £ < ¢. Make this ¢ the new ¢ and repeat the
construction that, starting with C; and the strategy profile f¢1, gave us Cy and f€2,

If instead Ay, = A7, identify the minimal ¢ > ¢ such that there is a critical type 0 in the
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set [Q @,@) (note that this ¢, if it exists, is necessarily larger than £). If there is no such ¢

we are done. Make this ¢ the new ¢ and repeat the construction that, starting with C; and
the strategy profile €1, gave us Cy and f¢2.

Starting with any C; and f¢ obtained in this manner construct C;,; and f¢+ using the
same procedure. Since there are finitely many indices ¢ and at each step either / drops or
{ rises, this process terminates and that at that point we have an equilibrium with a strict
payoff improvement.

Part II. If the equilibrium e induces at least two communication actions, then there is
a condition clusters C' and a critical type 6 # 0,1 with C N {0} # 0:

Suppose for contradiction that the equilibrium e induces at least two communication
actions, and that for all critical types 6 # 0,1 and all condition clusters C, it is the case
that C N {A} = 0. Let n > 1 be the number of communication intervals in e¢. Then any
condition cluster C satisfies either 0 € C or 1 € C, and there is a critical type 6, € (0,1).

Consider the case where 0 € C for a condition cluster C. Let the contract C' only differ
from C by replacing the condition cluster C by its (§; — C)-translation, C’. Evidently, the
game I'“’ has an equilibrium €€ in which types 6 € (0,6, — C) send the message sent by types
in (0y,60,) in equilibrium e, and all other types behave as they did before in equilibrium e€.
The sender’s expected payoff in the equilibrium €€ is the same as in €€, type ; — C strictly
prefers the action that is induced by types in (0,6; — C) to all other equilibrium actions and
type 6, strictly prefers the action that is induced by types in the communication interval
that is bounded below by #; to all other equilibrium actions.

Since the incentive constraints of types C' = 0, — C and C = 0, in the new equilibrium
e are slack, for any sufficiently small A > 0 we can replace contract C’ by a contract C*
that only differs from C’ by replacing the condition cluster C’ by its A-translation, C*, so
that the game ['C" has an equilibrium eCA, in which, relative to €, the length of the first
communication interval increases by A\ and the lengths of all the remaining communication
intervals are reduced by ﬁ Combining this with the fact that in €€, and therefore in e,
the first is the smallest communication interval, repeated application of Observation 1 (as
before) implies that for any sufficiently small A > 0 the sender’s expected payoff from e
strictly exceeds that from eC. It follows that e cannot have been optimal.

For the case where 1 € C for a condition cluster C, consider the contract C” that only
differs from C by replacing the condition cluster C by its —(C — 6,,_1)-translation, C”. In
this case, the game I'“" has an equilibrium ¢ in which types 6 € (1 — (C —6,,_1),1) send
the message sent by types in (6,,_1, C) in equilibrium e¢ and all other types behave as they
did before in equilibrium €€. Similar to the previous case, the incentive constraints of types

C" and C" are slack, (6//, 1| = (1—(C —6,-1),1] is the largest communication interval,

and therefore for sufficiently small A > 0 one can increase equilibrium payoffs by replacing
C" by its X translation. d
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Transfers

For the main analysis, we abstain from modeling transfers from the principal to the agent.
We believe that this does not entail a significant loss of generality. Two common uses of
transfers in the literature do not apply to our setup. Under moral hazard, the agent needs
to be incentivized to take particular actions; here, however, actions that are governed by the
contract are fully under the control of the principal. Under screening, the principal tries to
gather information about the agents private type, whereas in our setup, there is no private
information on the agent’s side. Whatever role remains for transfers is minimal as long
as the agent cares primarily about his wage. At the extreme, the agent has lexicographic
preferences for a higher wage. This case matches our model.

In the context of our example (Section 4), we here discuss a slightly less extreme case in
which the agent assigns some, but small, weight to his payoff from the action. We find that
adding transfers has little effect on the optimal contract as long as he agent cares primarily
about the wage.

We denote by w the receiver’s wage and by u” the receiver’s reservation utility. The
players’ payoffs can be rewritten in the following form US(y, 0, b,w) = —(0 +b—1)? —w and
UB(y,0,w) = —a(0—y)?+(1—a)w, where o > 0 denotes the (small) weight the receiver puts
on the payoff that depends on his action relative to his wage. The sender’s objective now is to
maximize EU®(y, 6, b, w) subject to the individual rationality (IR) constraint EU(y, 6, w) >
u®. Since the IR constraint is binding at the maximum, this amounts to maximizing weighted

R

joint surplus, U%(y,0,b,w) = —(0 +b—y)* — 12 (0 — y)* — ;=

We compare all four cases analyzed in the example. The bias is b = % and we vary a =
0.1 (= 0.5). For the case of no contract nothing changes. Considering optimal contracts we
obtain the following. In case of an obligationally complete contract, the optimal instruction
with transfers is x; = 0.80 (= 0.67) compared to x = 0.83 without transfers. Allowing
for one-step communication, an optimal contract with transfers is Cj, = {[0,0.68],0.64} (=
{[0,0.56],0.44}), while without transfers we have C; = {[0,0.72],0.69}. Finally, considering
two-step communication, the optimal contract with transfers is C;, = {[0.15,0.80],0.77}
(= {[0.10,0.65],0.54}), compared to the case without transfers with C; = {[0.16, 0.84], 0.83}.

For an illustration see Figure 7. The condition on top of the axis refers to the optimal
contract without transfers while the condition below the axis indicates the optimal contract

with transfers, for & = 0.1 (= 0.5) on the left-hand-side (right-hand-side).
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Figure 7: Example 1 with transfers, b = %, a = 0.1 left panel and a = 0.5 right panel: the
obligationally complete contracts, 1-step optimal contracts, and the 2-step optimal contracts.
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